Search results for " normal distribution"

showing 10 items of 57 documents

L1-Penalized Censored Gaussian Graphical Model

2018

Graphical lasso is one of the most used estimators for inferring genetic networks. Despite its diffusion, there are several fields in applied research where the limits of detection of modern measurement technologies make the use of this estimator theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. Typical examples are data generated by polymerase chain reactions and flow cytometer. The combination of censoring and high-dimensionality make inference of the underlying genetic networks from these data very challenging. In this article, we propose an $\ell_1$-penalized Gaussian graphical model for censored data and derive two EM-like algorithm…

0301 basic medicineStatistics and ProbabilityFOS: Computer and information sciencesgraphical lassoComputer scienceGaussianNormal DistributionInferenceMultivariate normal distribution01 natural sciencesMethodology (stat.ME)010104 statistics & probability03 medical and health sciencessymbols.namesakeGraphical LassoExpectation–maximization algorithmHumansComputer SimulationGene Regulatory NetworksGraphical model0101 mathematicsStatistics - MethodologyEstimation theoryReverse Transcriptase Polymerase Chain ReactionEstimatorexpectation-maximization algorithmGeneral MedicineCensoring (statistics)High-dimensional datahigh-dimensional dataGaussian graphical model030104 developmental biologysymbolscensored dataCensored dataExpectation-Maximization algorithmStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaAlgorithmAlgorithms
researchProduct

Functional connectivity inference from fMRI data using multivariate information measures

2022

Abstract Shannon’s entropy or an extension of Shannon’s entropy can be used to quantify information transmission between or among variables. Mutual information is the pair-wise information that captures nonlinear relationships between variables. It is more robust than linear correlation methods. Beyond mutual information, two generalizations are defined for multivariate distributions: interaction information or co-information and total correlation or multi-mutual information. In comparison to mutual information, interaction information and total correlation are underutilized and poorly studied in applied neuroscience research. Quantifying information flow between brain regions is not explic…

Brain MappingComputer scienceEntropyCognitive NeuroscienceConditional mutual informationBrainMultivariate normal distributionMutual informationcomputer.software_genreMagnetic Resonance ImagingInteraction informationRedundancy (information theory)Artificial IntelligenceEntropy (information theory)Computer SimulationTotal correlationInformation flow (information theory)Data miningcomputerNeural Networks
researchProduct

Bayesian hypothesis testing: A reference approach

2002

Summary For any probability model M={p(x|θ, ω), θeΘ, ωeΩ} assumed to describe the probabilistic behaviour of data xeX, it is argued that testing whether or not the available data are compatible with the hypothesis H0={θ=θ0} is best considered as a formal decision problem on whether to use (a0), or not to use (a0), the simpler probability model (or null model) M0={p(x|θ0, ω), ωeΩ}, where the loss difference L(a0, θ, ω) –L(a0, θ, ω) is proportional to the amount of information δ(θ0, ω), which would be lost if the simplified model M0 were used as a proxy for the assumed model M. For any prior distribution π(θ, ω), the appropriate normative solution is obtained by rejecting the null model M0 wh…

CombinatoricsBinomial distributionStatistics and ProbabilityBayes' theoremDistribution (mathematics)Prior probabilityStatisticsMultivariate normal distributionContext (language use)Statistics Probability and UncertaintyLindley's paradoxMathematicsStatistical hypothesis testing
researchProduct

On the Efficiency of Affine Invariant Multivariate Rank Tests

1998

AbstractIn this paper the asymptotic Pitman efficiencies of the affine invariant multivariate analogues of the rank tests based on the generalized median of Oja are considered. Formulae for asymptotic relative efficiencies are found and, under multivariate normal and multivariatetdistributions, relative efficiencies with respect to Hotelling'sT2test are calculated.

CombinatoricsStatistics and ProbabilityMultivariate statisticsNumerical AnalysisRank (linear algebra)Consistent estimatorAffine invariantStatistics::MethodologyMultivariate normal distributionStatistics Probability and UncertaintyAsymptotic efficiency Oja median multivariate signed-rank test multivariate-rank test Pitman efficiencyMathematicsJournal of Multivariate Analysis
researchProduct

On the Computation of Symmetrized M-Estimators of Scatter

2016

This paper focuses on the computational aspects of symmetrized Mestimators of scatter, i.e. the multivariate M-estimators of scatter computed on the pairwise differences of the data. Such estimators do not require a location estimate, and more importantly, they possess the important block and joint independence properties. These properties are needed, for example, when solving the independent component analysis problem. Classical and recently developed algorithms for computing the M-estimators and the symmetrized M-estimators are discussed. The effect of parallelization is considered as well as new computational approach based on using only a subset of pairwise differences. Efficiencies and…

Computer scienceComputation05 social sciencesEstimatorMultivariate normal distributionM-estimators01 natural sciencesIndependent component analysisscatter010104 statistics & probabilityScatter matrix0502 economics and businessPairwise comparison0101 mathematicsAlgorithmIndependence (probability theory)050205 econometrics Block (data storage)
researchProduct

Finding condensed descriptions for multi-dimensional data.

1976

Abstract We describe two programs that may be used to find condensed descriptions for data available in a contingency table or in a covariance matrix in the case that these data follow a multinomial or a multivariate normal distribution, respectively. The programs perform a stepwise model search among multiplicative models by computing appropriate likelihood-ratio test statistics.

Contingency tableCovariance matrixComputersMultiplicative functionStatisticsMedicine (miscellaneous)Multinomial distributionMultivariate normal distributionModels TheoreticalMulti dimensional dataStatistical hypothesis testingMathematicsComputer programs in biomedicine
researchProduct

Regular Minimality and Thurstonian-type modeling

2009

Abstract A Thurstonian-type model for pairwise comparisons is any model in which the response (e.g., “they are the same” or “they are different”) to two stimuli being compared depends, deterministically or probabilistically, on the realizations of two randomly varying representations (perceptual images) of these stimuli. The two perceptual images in such a model may be stochastically interdependent but each has to be selectively dependent on its stimulus. It has been previously shown that all possible discrimination probability functions for same–different comparisons can be generated by Thurstonian-type models of the simplest variety, with independent percepts and deterministic decision ru…

Discrete mathematicsApplied Mathematicsmedia_common.quotation_subjectHausdorff spaceMultivariate normal distributionDecision ruleMaxima and minimaSymmetric relationPerceptionEuclidean geometryPairwise comparisonGeneral Psychologymedia_commonMathematicsJournal of Mathematical Psychology
researchProduct

Weak versus strong dominance of shrinkage estimators

2021

We consider the estimation of the mean of a multivariate normal distribution with known variance. Most studies consider the risk of competing estimators, that is the trace of the mean squared error matrix. In contrast we consider the whole mean squared error matrix, in particular its eigenvalues. We prove that there are only two distinct eigenvalues and apply our findings to the James–Stein and the Thompson class of estimators. It turns out that the famous Stein paradox is no longer a paradox when we consider the whole mean squared error matrix rather than only its trace.

Economics and EconometricsClass (set theory)Trace (linear algebra)James–SteinEconomics Econometrics and Finance (miscellaneous)James–Stein estimatorContrast (statistics)EstimatorSettore SECS-P/05 - EconometriaMultivariate normal distributionJames-SteinVariance (accounting)DevelopmentC51Dominance (ethology)C13Applied mathematicsBusiness and International ManagementShrinkageEigenvalues and eigenvectorsDominanceMathematics
researchProduct

Estimating Engel curves under unit and item nonresponse

2010

SUMMARY This paper estimates food Engel curves using data from the first wave of the Survey on Health, Aging and Retirement in Europe (SHARE). Our statistical model simultaneously takes into account selectivity due to unit and item nonresponse, endogeneity problems, and issues related to flexible specification of the relationship of interest. We estimate both parametric and semiparametric specifications of the model. The parametric specification assumes that the unobservables in the model follow a multivariate Gaussian distribution, while the semiparametric specification avoids distributional assumptions about the unobservables. Copyright © 2011 John Wiley & Sons, Ltd.

Economics and EconometricsSettore SECS-P/05 - EconometriaStatistical modelMultivariate normal distributionUnit (housing)Engel curve Unit nonresponse Item nonresponse Endogeneity semiparametric estimationEngel curveStatisticsEconomicsEconometricsStatistics::MethodologyEndogeneitySocial Sciences (miscellaneous)Parametric statistics
researchProduct

Non-Gaussian Distribution for Var Calculation: an Assessment for the Italian Market

2001

Abstract In this paper we compare different approaches to computing VaR (Value-at-Risk) for heavy tailed return series. Using data from the Italian market, we show that almost all the return series present statistically significant skewness and kurtosis. We implement (i) the stable models proposed by Rachev et al . (2000), (ii) an alternative to the Gaussian distributions based on a Generalized Error Distribution and (iii) a non-parametric model proposed by Li (1999). All the models are then submitted to backtest on out-of-sample data in order to assess their forecasting power. We observe that when the percentiles are low, all the models tested produce results that are dominant compared to …

EngineeringPercentileSeries (mathematics)business.industryGaussianRiskMetricssymbols.namesakeDistribution (mathematics)StatisticsEconometricsKurtosissymbolsbusinessValue at riskGeneralized normal distributionIFAC Proceedings Volumes
researchProduct